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1. Introduction 
One increasingly important technique for improving software-based system integrity is 
providing systems with the ability to adapt themselves at run time to handle such things 
as resource variability, changing user needs, and system faults. In the past, systems that 
supported such self-adaptation were rare, confined mostly to domains like 
telecommunications switches or deep space control software, where taking a system 
down for upgrades was not an option, and where human intervention was not always 
feasible. However, today more and more systems have this requirement, including e-
commerce systems and mobile embedded systems. Such systems must continue to run 
with only minimal human oversight, and cope with variable resources (bandwidth, server 
availability, etc.), system faults (servers and networks going down, failure of external 
components, etc.), and changing user priorities (high-fidelity video streams at one 
moment, low fidelity at another, etc.). 

Traditionally system self-repair has been handled within the application, and at the 
code level. For example, applications typically use generic mechanisms such as exception 
handling or timeouts to trigger application-specific responses to an observed fault or 
system anomaly. Such mechanisms have the attraction that they can trap an error at the 
moment of detection, and are well-supported by modern programming languages (e.g., 
Java exceptions) and run time libraries (e.g., timeouts for Remote Procedure Calls). 
However, they suffer from the problem that it can be difficult to determine what the true 
source of the problem is, and hence what kind of remedial action is required. Moreover, 
while they can trap errors, they are not well-suited to recognizing “softer” system 
anomalies, such as gradual degradation of performance over some communication path, 
or transient failures of a server. 

Recently a number of researchers have proposed an alternative approach in which 
system models – and in particular, architectural models – are maintained at run time and 
used as a basis for system reconfiguration and repair [17].  The Dynamic Assembly for 
Systems Adaptability, Dependability, and Assurance (DASADA) Project, funded by 
DARPA, seeks to mature this approach to enable mission-critical systems to meet the 
high assurance, dependability, and adaptability requirements of the US Department of 
Defense. The Rainbow Project, conducted at Carnegie Mellon University, sought to 
provide basic architecture infrastructure for this approach, in addition to applying the 
technique to systems where performance was an important requirement. 

Architecture-based adaptation has a number of nice properties. As an abstract model, 
an architecture can provide a global perspective on the system, enabling high-level 
interpretation of system problems. This in turn allows one to better identify the source of 
some problem. Moreover, architectural models can make “integrity” constraints explicit, 
helping to ensure the validity of any system change.  
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A key issue in making this approach work is the choice of architectural style used to 
represent a system.1 Previous work in this area has focused on the use of specific styles 
(together with their associated description languages and toolsets) to provide intrinsically 
modifiable architectures.  Taylor et al. use hierarchical publish-subscribe via C2 [16,19]; 
Gorlick et al. use a dataflow style via Weaves [8]; and Magee et al. use bi-directional 
communication links via Darwin [11,12]. 

The specialization to particular styles has the benefit of providing strong support for 
adapting systems built in those styles. However, it has the disadvantage that a particular 
style may not be appropriate for an existing implementation base, or it may not expose 
the kinds of properties that are relevant to adaptation. For example, different styles may 
be appropriate depending on whether one is using existing client-server middleware, 
Enterprise JavaBeans (EJB), or some other implementation base. Moreover, different 
styles may be useful depending on whether adaptation should be based on issues of 
performance, reliability, or security. 

In the research conducted under this grant, we demonstrated how to generalize 
architecture-based adaptation by making the choice of architectural style an explicit 
design parameter in the framework. This added flexibility allows system designers to 
pick an appropriate architectural style in order to expose properties of interest, provide 
analytic leverage, and map cleanly to existing implementations and middleware. 

The key technical idea is to make architectural style a first class run time entity. As 
we will show, formalized architectural styles augmented with certain run time 
mechanisms provide a number of important capabilities for run time adaptation: (1) they 
define a set of formal constraints that allow one to detect system anomalies; (2) they are 
often associated with analytical methods that suggest appropriate repair strategies; (3) 
they allow one to link stylistic constraints with repair rules whose soundness is based on 
corresponding (style-specific) analytical methods; (4) they provide a set of operators for 
making high-level changes to the architecture; (5) they prescribe what aspects of a system 
need to be monitored. 

1.1. Innovative Claims 
In our  proposal, we suggested the development of new capabilities to reduce the cost and 
improve the reliability of making systematic changes to complex systems. The 
technology developed with the support of this grant enables significant improvements in 
our ability to: 

1. Detect dynamic (run-time) properties of complex, distributed systems. 
A monitoring infrastructure consisting of a set of probes that collects status and 

performance information for networks and endpoints was developed. The information 
includes both static information that is useful for configuration-time adaptation and 
dynamic information that can be used to guide adaptation decisions at run-time.  

A new set of mechanisms, termed gauges, aggregate the results of multiple probes 
into information that is directly relevant to architectural analysis. The Rainbow 
                                                 

1 By “architectural style” we mean a vocabulary of component types and their interconnections, together 
with constraints on how that vocabulary is used. 
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project developed the DASADA Gauge Infrastructure, which provides a common 
basis for gauges developed by other DASADA researchers to communicate 
monitoring information about a running system to adaptors that dynamically adapt a 
software system. Additionally, Rainbow provided gauges and probes to report 
information about network performance, as well as a system called DiscoTect for 
discovering the runtime architecture of a target system. 

2. Determine whether those properties violate critical assumptions of a running 
system. 
New run-time monitoring infrastructure allows a system to introspect about its 

own properties, determining when existing system behavior is inconsistent with 
expected operating assumptions and parameters. This permits the system to rapidly 
detect, before system failure or severe degradation, when it needs to be adjusted or 
reconfigured. The Rainbow project retargeted the Acme toolset to provide runtime 
architecture reporting, constraint analysis and detection of violations of architectural 
rules at runtime. 

3. Automate system adaptation and repair in response to violations of 
architectural assumptions. 

 “Repair strategies” associated with the architectural style permit the system to 
automatically adapt itself to certain classes of violation. In Rainbow, we provide a 
specific set of repair strategies tuned to performance enhancement (in combination 
with the performance gauges noted above). We also provide a repair engine, called 
Tailor, that can be used to execute repair strategies to change the architecture and 
propagate those repairs to the running system. 

In addition to on-line repairs, off-line repair actions are propagated into the 
system implementations using a new generation approach, termed “compositional 
connectors.” Using it, one adapts interaction mechanisms by incrementally adding 
new capabilities to support changes in performance, security, or reliability.  

The ability to introspect relies on a run-time representation of system architecture 
models and constraints over those models, building on the Acme Architecture 
Description Language (ADL) infrastructure developed under DARPA’s Evolutionary 
Design of Complex Systems (EDCS) program. In addition to tools built specifically for 
this project, this infrastructure enables the integration of analysis tools developed under 
DASADA and EDCS, to detect constraint violation. 

In combination, these capabilities radically improve the ability to (a) handle system 
changes with respect to the performance-oriented gauges supported by our technology, 
and (b) incorporate additional gauges and system adaptation rules produced by other 
DASADA-funded projects. This dramatically reduces the need for user intervention in 
adapting systems to achieve quality goals through reliable, architecture-driven self-
adaptation. 

We have evaluated the technologies in the context of distributed systems, which 
typically depend heavily on the performance properties of the run-time environment, and 
which exhibit considerable variability in their architectural requirements. Our 
demonstration testbed, built on standard network platforms and using standard 
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application components, allows us to benchmark our new capabilities for adaptation, and 
determine both the strengths and limitations of our mechanisms. 

In Section 2 of this report, we describe the technical contributions of our work in 
terms of specifying architectures and using them for run time adaptation. In Section 3, we 
describe the tool support that we have developed for applying our approach. Case studies 
and evaluations are described in Section 4. Finally, in Section 5 we discuss our 
conclusions and areas of future research. 

2. Approach and Framework 
Our starting point is an architecture-based approach to self-adaptation, similar to [17] (as 
illustrated in Figure 1): In a nutshell, an executing system (1) is monitored to observe its 
run time behavior; (2) Monitored values are abstracted and related to architectural 
properties of an architectural model; (3) Changing properties of the architectural model 
trigger architectural analysis to determine whether the system is operating within an 
envelope of acceptable ranges; (4) Unacceptable operation causes repairs, which (5) 
adapt the architecture; (6) Architectural changes are propagated to the running system. 

The key new feature in this framework is the use of style as a first class entity that 
allows one to tailor the framework to the application domain, and determines the actual 
behavior of each of the parts. Specifically, style is used to determine (a) what properties 
of the executing system should be monitored, (b) what constraints need to be evaluated, 
(c) what to do when constraints are violated, and (d) how to carry out repair in terms of 
high-level architectural operators. In addition we need to introduce a style-specific 
translation component to manage the transactional nature of repair and map high-level 
architecture operations into lower-level system operations. 

To illustrate how the approach works, consider a common class of web-based client 
server applications that are based on an architecture in which web clients access web 
resources by making requests to one of several geographically distributed server groups 
(see Figure 2). Each server group consists of a set of replicated servers, and maintains a 
queue of requests, which are handled in First In First Out (FIFO) order by the servers in 
the server group. Individual servers send their results directly to the requesting client. 
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The organization that manages the overall web service infrastructure wants to make 
sure that two inter-related system qualities are maintained. First, to guarantee quality of 
service for the customer, the request-response latency for clients must be under a certain 
threshold (e.g., 2 seconds). Second, to keep costs down, the set of currently active servers 
should be kept as loaded as possible, subject to the first constraint. 

Since access loads in such a system will naturally change over time, the system has 
two built-in low-level adaptation mechanisms. First, we can activate a new server in a 
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server group or deactivate an existing server. Second, we can cause a client to shift its 
communication path from one server group to another. 

The challenge is to engineer things so that the system adapts appropriately at run 
time. Using the framework described above, here is how we would accomplish this. First, 
given the nature of the implementation, we decide to choose an architectural style based 
on client-server in which we have clients, server groups, and individual servers, together 
with the appropriate client-server connectors. Next, because performance is the key 
quality attribute of concern, we adapt that style so that it captures performance-related 
properties and makes explicit constraints about acceptable performance. Here, client-
server latency and server load are the key properties, and the constraints are derived from 
the two desiderata listed above. Furthermore, because of the nature of communication we 
are able to pick a style for which formal performance analyses exist – in this case 
M/M/m-based queuing theory. 

To make the style useful as a run time artifact we now augment the style with two 
specifications: (a) a set of style-specific architectural operators, and (b) a collection of 
repair strategies written in terms of these operators and associated with the style’s 
constraints. The operators and repair strategies are chosen based on an examination of the 
analytical equations, which formally identify how the architecture must change in order 
to affect certain parameters (like latency and load). 

There are now only two remaining problems. First, we must get information out of 
the running system. To do this we employ low-level monitoring mechanisms that 
instrument various aspects of the executing system. We use existing off-the-shelf 
performance-oriented “system probes,” using probes from other DASADA researchers 
(such as Active Interface Development Environment (AIDE) from George Heineman at 
Worcester Polytechnic Institute [9] and ProbeMeister from Dave Wells at Object 
Services and Consulting, Inc. [21]). To bridge the gap between low-level monitored 
events and architectural properties we use a system of adapters, called “gauges,” which 
aggregate low-level monitored information and relate it to the architectural model. For 
example, we have to aggregate various measurements of the round-trip time for a request 
and the amount of information transferred to produce bandwidth measurements at the 
architectural level.  

The second problem is to translate architectural repairs into actual system changes. 
To do this we write a simple table-driven translator that can interpret architectural repair 
operators in terms of the lower level system modifications. This translator can interact 
with Workflakes from Gail Kaiser at Columbia University 
(http://www.psl.cs.columbia.edu/old/WorkFlakes/) to effect changes in the actual system. 

In the running system the monitoring mechanisms update architectural properties, 
causing reevaluation of constraints. Violated constraints (high client-server latencies, or 
low server loads) trigger repairs, which are carried out on the architectural model, and 
translated into corresponding actions on the system itself (adding or removing servers, 
and changing communication channels). The existence of an analytic model for 
performance (M/M/m queuing theory) helps guarantee that the specific modification 
operators for this style are sound. Moreover, the matching of the style to the existing 
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system infrastructure helps guarantee that relevant information can be extracted, and that 
architectural changes can be propagated into the running system. 

In the remainder of this section, we discuss in more detail each aspect of the 
architectural adaptation framework.  

2.1. Architectures and Architectural Style 
The centerpiece of our approach is the use of stylized architectural models. Although 
there are many modeling languages and representation schemes for architecture, we adopt 
a simple approach in which an architectural model is represented as an annotated, 
hierarchical graph.2 Nodes in the graph are components, which represent the principal 
computational elements and data stores of the system. Arcs are connectors, which 
represent the pathways of interaction between the components. Components and 
connectors have explicit interfaces (termed ports and roles, respectively). To support 
various levels of abstraction and encapsulation, we allow components and connectors to 
be defined by more detailed architectural descriptions, which we call representations. 

To account for semantic properties of the architecture we allow elements in the graph 
to be annotated with extensible property lists. Properties associated with a connector 
might define its protocol of interaction, or performance attributes (e.g., delay, 
bandwidth). Properties associated with a component might define its core functionality, 
performance attributes (e.g., average time to process a request, load, etc.), or its 
reliability. 

Representing an architecture as an arbitrary graph of generic components and 
connectors has the advantage of being extremely general and open ended. However, in 
practice there are a number of benefits to constraining the design space for architectures 
by associating a style with the architecture. An architectural style typically defines a set 
of types for components, connectors, interfaces, and properties together with a set of rules 
that govern how elements of those types may be composed.   

Requiring a system to conform to a style has many benefits, including support for 
analysis, reuse, code generation, and system evolution [6, 18, 23]. Moreover, the notion 
of style often maps well to widely-used component integration infrastructures (such as 
Enterprise JavaBeans, High Level Architecture, Common Object Request Broker 
Architecture), which prescribe the kinds of components allowed and the kinds of 
interactions that may take place between them. 

As a result, a number of Architecture Description Languages (ADLs) and their 
toolsets have been created to support system development and execution for specific 
styles. For example, C2 [19] supports a style based on hierarchical publish-subscribe; 
Wright [1, 2] supports a style based on formal specification of connector protocols; 
MetaH [20] supports a style based on real-time avionics control components.  

In our research we adopt the view that while choice of style is critical to supporting 
system design, execution, and evolution, different styles will be appropriate for different 

                                                 
2 This is the core architectural representation scheme adopted by a number of ADLs, including Acme [8], 
xArch [3], xADL [5], ADML [15], and SADL[14]. 
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systems. For example, a client-server system, such as the one in our example, will most 
naturally be represented using a client-server style. In contrast, a signal processing system 
would probably adopt a dataflow-oriented pipe-filter style. While one might encode these 
systems in some other style, the mapping to the actual system would become much more 
complex, with the attendant problems of ensuring that any observation derived from the 
architecture has a bearing on the system itself. 

For this reason, two key elements of our approach are the explicit definition of style 
and its accessibility at run time for system adaptation. Specifically, we define a style as a 
system of types, plus a set of rules and constraints.  The types are defined in Acme [7], a 
generic ADL that extends the above structural core framework with the notion of style. 
The rules and constraints are defined in Armani [13] a first-order predicate logic similar 
to the Unified Modeling Language’s Object Constraint Language (OCL), augmented with 
a small set of architectural functions. These functions make it easier to define logical 
expressions that refer to things like connectedness, type conformance, and hierarchical 
relationships.3 We say that a system conforms to a style if it satisfies all of the constraints 
defined by the style (including type conformance). 

An example of an architectural style is a pipe-filter style. Elements in this style 
include filter components, which receive data and transform that data, and pipe 
connectors, which transfer data between filters. In Acme, the definition of a filter 
component type looks like: 

 

This type definition would be instantiated in a given systems by creating specific 
filter components. Any component conforming to the FilterT type would have at least the 
throughput property, and the two ports stdIn and stdOut, which in turn need to conform to the 
port types InputPortT and OutputPortT. 

Being able to define styles in Acme gives some reuse in our framework. We envision 
a suite of general styles (along with monitoring and repair capabilities) from which a 
style can be chosen to be plugged into our framework. An architect would then need to 
model the system according to this style, perhaps extending the style or utilizing other 
styles to model attributes of interest.4 

                                                 
3 Details on Acme and Armani can be found elsewhere [12, 26]. Here we focus on how those representation 
schemes, originally developed as design-time notations, are extended and used to support run time 
adaptation. 
4 A style would also supply operators to modify the style, and perhaps repair facilities. These are discussed 
later in the section. 

Component type Filter T = { 
 Property throughput : float; 
 Port stdIn : InputPortT; 
 Port stdOut : OutputPortT; 
} 
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2.1.1. Analytical Methods for Architectures 
As we argued above, one of the main benefits of style-based architectural modeling is the 
ability to use analytical methods to evaluate properties of a system’s architectural design. 
For example, MetaH uses real-time schedulability analysis [20], and Wright uses protocol 
model checking [1]. Use of the appropriate analytical methods helps us to focus on the 
aspects of the architecture that we need to model, to identify the constraints of the style, 
and to guide the error resolution when constraints are violated. For instance, in a Service-
Coalition style, cost analysis of the system indicates which services to monitor. Based on 
what factors drive cost—for example, performance—we can add to or refine cost-based 
constraints to take those factors into account. This can help guide us to the cause of error 
when a cost constraint fails. If performance were a factor, a cost violation in a particular 
component would suggest that we check the performance properties of that component 
for the cause. Furthermore, cost-benefit analysis would tell us how to trade-off cost with 
performance to find a better service during adaptation. 

An analytical method can potentially be applied to several different styles. For 
example, one might use queuing theoretic analysis in a Client-Server style or a Pipe-Filter 
style, and cost-benefit analysis can be applied to almost any style. When applied to a 
particular style, however, the analytical method takes on the vocabulary of that style, and 
often augments elements of that style with analysis-specific properties. For example, 
queuing theoretic analysis augments a server component with properties such as load, 
service time, etc. 

2.2. Monitoring 
In order to provide a bridge from system level behavior to architecturally-relevant 
observations, we have defined a three-level approach illustrated in Figure 3. This 
monitoring infrastructure is described in more detail in Section 3: here we summarize the 
main features, stressing the connection with style specifications. 

The lowest level is a set of probes, which are “deployed” in the target system or 
physical environment.5 Probes monitor the system and announce observations via a 

                                                 
5 For monitoring, we utilize the terminology defined by the DASADA program. 
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“probe bus.” At the second level a set of gauges consumes and interprets lower-level 
probe measurements in terms of higher-level model properties. Like probes, gauges 
disseminate information via a “gauge reporting bus.” The top-level entities in Figure 3 
are gauge consumers, which consume information disseminated by gauges. Such 
information can be used, for example, to update an abstraction/model, to make system 
repair decisions, to display warnings and alerts to system users, or to show the current 
status of the running system. 

The separation of the monitoring infrastructure into these parts helps isolate separable 
concerns. Probes are highly implementation-specific, and typically require detailed 
knowledge of the execution environment. Gauges are model-specific. They need only 
understand how to convert low-level observations into properties of more abstract 
representations, such as architectural models. Finally, gauge consumers are free to use the 
interpreted information to cause various actions to occur, such as displaying warnings to 
the user or automatically carrying out repairs. 

In the context of architectural repair, we use the architectural style to inform us where 
to place gauges. Specifically, for each constraint that we wish to monitor, we must place 
gauges that dynamically update the properties over which the constraint is defined. In 
addition, our repair strategies may require additional monitored information to pinpoint 
sources of problems and execute repair operations. 

While it may be necessary to develop gauges for each different style, and probes for 
each specific implementation, we can gain some leverage by using general monitoring 
technologies. For example, if the concerns are bandwidth or latency then it is possible to 
use general network gauges (for example, those based on Remos [10]) to report the 
bandwidth, regardless of the adaptation. Similarly, it is possible to use general probe 
technology to ameliorate the task of writing probes for particular implementations. For 
example, while it might be necessary to choose which particular method calls need to be 
monitored in a particular implementation, it is possible to use existing technologies like 
ProbeMeister [21] to generate the actual probes, without writing any additional code.  

2.3. Analysis 
In order to determine if repair is needed, it is necessary to analyze the architecture in the 
context of monitored information. As described in the previous section, monitoring 
information is stored as properties in the architecture. Analysis in the Rainbow 
framework is conducted by evaluating architectural constraints represented in Armani 
[13]. Whenever a property value changes, Armani rules are re-evaluated; if the 
constraints fail, then repair strategies associated with the constraints are triggered. This is 
described in the next section. 

2.4. Reconciliation 
The representation schemes for architectures and style outlined above were originally 
created to support design-time development tools. In this section we show how styles can 
be augmented to function as run time adaptation mechanisms.  
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Two key augmentations to style definitions are needed to make them useful for run 
time adaptation: (1) the definition of a set of adaptation operators for the style, and (2) the 
definition of a set of repair strategies. 

2.4.1. Adaptation Operators 
The first extension is to augment a style description with a set of operators that define the 
ways one can change instances of systems in that style. Such operators determine a 
“virtual machine” that can be used at run time to adapt an architectural design. 

Given a particular architectural style, there will typically be a set of natural operators 
for changing an architectural configuration and querying for additional information. In 
the most generic case, architectures can provide primitive operators for adding and 
removing components and connectors [22]. However, specific styles can often provide 
much higher-level operators that exploit the restrictions in that style and the intended 
implementation base. For example, a client-server style might support an operation to 
replicate a server to improve performance, whereas a pipe-filter style might support an 
operation to improve performance by adding a filter to compress the data on a pipe. 

Two key factors determine the choice of operators for a style. First is the style itself – 
the kinds of components, connectors and configuration rules. Based on its constraints, a 
style can both limit the set of operations, and also suggest a set of higher-level operators. 
For example, if a style specifies that there must be exactly one instance of a particular 
type of component, such as a database, the style should not provide operations to add or 
remove an existing instance of this type. On the other hand, if another constraint says that 
every client component in the system must be attached to the (unique) database, it would 
make sense that a “new-client” operation would automatically create a new client-
database connector and attach it between the new component and the database. These 
style-specific operators are defined in terms of style-neutral operators such as “add a 
component” or “remove a connector.” The definition of these style-neutral operations can 
be based on [22] or [23].   

The second factor is the feasibility of carrying out the change. To evaluate feasibility 
requires some knowledge of the target implementation infrastructure. It makes no sense 
to prescribe an architectural operator that has no hope of ever being carried out on the 
running system. For some styles, the relation is defined by construction (since 
implementations are generated from architectures). More generally, however, the style 
designer may have to make certain assumptions about the availability of implementation-
changing operators that will be provided by the run time environment of the system.  

It is important to note that, while it is necessary to write adaptation operators for each 
style, we anticipate that this will only need to be done once for each style. A style should 
provide all operations that make sense in changing the style, regardless of any particular 
adaptation that might occur. For example, for a Client-Server style, the moveClient operator 
will be the same regardless of the adaptation being performed. 

While adaptation operators are specific to styles we can, however, describe some, 
commonly occurring operators. In general, every style would be expected to have some 
form of add and remove, as well as possibly activate and deactivate operators for 
component instances (e.g., addClient, removeFilter, activateServer, deactivateDB). A style would also be 
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expected to have add/remove or connect/disconnect operators to setup connectors 
between components (e.g., addRPC, removeVideoStream, connectPipe, disconnectSQL). In addition, there 
will typically be operators to create, delete, and modify element properties (e.g., 
createLatencyProperty, deleteFrameRateProperty, modifyCompressionProperty). Finally, depending on the style, 
there might conceivably be operators for changing a component’s behavior via 
modification of specific properties of the component, such as changing the internal 
behavioral protocol of a component. 

2.4.2. Repair Strategies 
The second extension to the traditional notion of architectural style is the specification of 
repair strategies that correspond to selected constraints of the style. The key idea is that 
when a stylistic constraint violation is detected, the appropriate repair strategy will be 
triggered. 
Describing Repair Strategies 

A repair strategy has two main functions: first to determine the cause of the problem, and 
second to determine how to fix it. Thus the general form of a repair strategy is a sequence 
of repair tactics. Each repair tactic is guarded by a pre-condition that determines whether 
that tactic is applicable. The evaluation of a tactic’s pre-condition will usually involve the 
examination of various properties of the architecture in order to pinpoint the problem and 
determine applicability. If it is applicable, the tactic executes a repair script that is written 
as an imperative program using the style-specific operators described above. 

To handle the situation that several tactics may be applicable, the enclosing repair 
strategy decides on the policy for executing repair tactics. It might apply the first tactic 
that succeeds. Alternatively, it might sequence through all of the tactics, or use some 
other style-specific policy. 

The final complication associated with repair strategies is the use of transactions. The 
body of a repair strategy is typically enclosed within a transactional scope so that if an 
error occurs during the execution of a repair, the system can abort the repair, leaving the 
architecture in a consistent state. Failure of a repair strategy can be caused by a number 
of factors. For example, it may be the case that none of the tactics have applicable firing 
conditions. Or, an applicable tactic may find that conditions of the actual system or its 
environment do not permit it to carry out its repair script. Transaction aborts cause the 
system to inform the user of a system error that cannot be handled by the automated 
mechanisms. 
Choosing Tactics 

One of the principal advantages of allowing the system designer to pick an appropriate 
style is the ability to exploit style-specific analyses to determine whether repair tactics are 
sound. By sound, we mean that if executed, the changes will help reestablish the violated 
constraint.  

In general, an analytical method for an architecture will provide a compositional 
method for calculating some system property in terms of the properties of its parts. For 
example, a reliability analysis will depend on the reliability of the architectural parts, 
while a performance analysis will depend on various performance attributes of the parts. 
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By looking at the constraint to be satisfied, the analysis can often point the repair strategy 
writer both to the set of possible causes for constraint violation, and for each possible 
cause, to an appropriate repair. 

For instance, one type of analysis appropriate to the pipe-filter style is throughput 
analysis. Such an analysis allows one to characterize a batch-processing pipe-filter 
system by the ratio of the input quantity to the output quantity (say, in terms of records), 
and compose the overall ratio from the ratio of each individual filter based on connection 
topology. The administrator of this system might want to enforce a constraint on the 
system in terms of this input-output ratio. Violation of this throughput ratio constraint 
suggests congestion of processing within the system. The associated repair strategy can 
then use a more fine-grained throughput analysis to pinpoint the segment or the particular 
filter causing the congestion. 

2.5. Propagation 
The final component of our adaptation framework is a translator that interprets repair 
scripts as operations on the actual system (Figure 1, item 6). As we noted earlier, we 
assume that the executing system provides a set of system-changing operations via a 
Runtime Manager. The nature of these operations will depend heavily on the implementation 
platform. In general, a given architectural operation will be realized by some number of 
lower level system reconfiguration operations. Each such operator can raise exceptions to 
signal a failure. The Translator then propagates them to the model level, where transaction 
boundaries can cause the repair strategy to abort. 

Even though the system-changing operations are system specific, the mechanisms for 
propagating system changes can be fairly general, subject to the constraints of the 
implementation platform. These mechanisms can be as simple as socket communication, 
or as complicated as mobile-code or an entire change propagation technology. 

3. Tool support 
In this section, we discuss the tool support that we developed as part of the DASADA 
program. We developed support for each of the parts of our infrastructure, in addition to 
development tools to aid in the development of particular gauges and repairs. 

3.1. Gauge Infrastructure 
To illustrate how the infrastructure is realized in practice consider Figure 4, which 
presents a simple example of probing and gauging. Imagine that we have a target system 
that consists of a sender that is sending files to a server. The architectural model of this 
system, represented at the top of the figure, consists of two components (the sender and 
the server) and one connector, L, representing the network link between them. The 
implementation of this system consists of the programs comprising the sender and server 
(these could be further elaborated, but that is of no interest in this example), the actual 
network links between the machines on which the sender and server are executing, and 
the set of files to be delivered. The user of this system requires that the set of files should 
reach the server within a certain deadline. Whether this deadline is being met by the 
running application depends on the size of the files to be transferred and the bandwidth 
available between the sender and the receiver. Thus, to ascertain the behavior of the 
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system with respect to this performance attribute, we need to insert some probes and 
gauges. 

Two types of probes are inserted in the target system. One type of probe monitors the 
environment, and reports the bandwidth of the various links between the machines of 
interest; these probes are represented by P2, P3, and P4. The second type of probe, P1, is 
inserted into the sender, and reports the size of the files being loaded into the system. 
Such a probe might be realized through instrumenting the system call fopen, for example. 
This probe information is not directly related to the performance attribute in the 
architectural model, which is in terms of transfer time between the sender and the server. 
To achieve this level of monitoring, a gauge is attached to the connector L in the 
architectural model. This gauge uses the probe values and calculates the estimated 
transfer time based on the file size and the available bandwidth. This value is then 
reported as the transfer time of that particular connector, to be consumed by a monitoring 
tool that will evaluate whether the deadline can be met.  

The nature of probes, technologies for inserting them into systems, and how they 
report values is not discussed in detail in this paper. However, their context with respect 
to gauges is important in highlighting the difference between the low level, system 
observations and the high level, architectural observations that gauges produce.  

3.1.1. Gauge Definition 
Gauges are software entities that gather, aggregate, compute, analyze, disseminate 

and/or visualize measurement information about software systems. Software tools/agents, 
software engineers, and system operators consume such information, use it to evaluate 
system state and dynamically make adaptation decisions. In its pure form, a gauge does 
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not change its associated model or control the software system directly. However, the 
outputs of a gauge may be used by other entities to effect such changes.  

Several principles or assumptions underlie this notion of gauges and have been used 
to guide the design of the gauge specification and gauge APIs. These assumptions 
include: 

1. The value (or values) reported by a gauge can have multiple consumers. A single 
gauge consumer can use multiple gauges. For example, there may be gauge 
consumers that simply monitor and report values to the user, and other consumers 
that automatically detect impending failure and take action to adapt the 
underlying system automatically, but use the same model as the basis for both 
activities. In this case, we do not want to duplicate gauges.  

2. Different parties will develop different types of gauges. We expect there to be a 
wide variety of gauge types, reflecting the diverse needs for system monitoring 
and adaptation. We expect that in many cases a heterogeneous mix of gauges will 
be operating in a distributed fashion on multiple (heterogeneous) platforms.  

3. The set of gauge consumers can change dynamically. In this way we can 
dynamically adapt our monitoring infrastructure to add new observational 
capabilities as needed. 

4. Each gauge has a type, which describes the gauge’s setup and configuration 
requirements, and the types of values that it reports. Gauge developers and gauge 
consumers should have a contract that specifies what to provide and require from 
a gauge. 

5. Gauges are associated with models. Models allow gauges to interpret their inputs 
and produce higher-level outputs. Moreover, gauge values must be meaningful in 
some context, and the model provides the context. For example, the transfer time 
gauge of the example above interprets the physical observations in terms of an 
abstract connector in the context of a specific architectural model. 

We also identify the need for certain gauge administrative entities – called gauge 
managers – that will be developed to facilitate the control, management, and meta-
information query of gauges.  

Given the diversity of gauges, implemented by many different parties, using different 
programming languages, running on different hardware and software platforms, it is 
important to be able to characterize gauges so that a system builder can determine what 
types of gauges are available and what kinds of capabilities that type of gauge has. Gauge 
developers can also use such a characterization as a functional specification around which 
to base their implementations, and by the gauge run-time infrastructure to manage gauges 
by providing gauge meta-information. In this section we consider how one might specify 
a gauge. In brief, a gauge’s specification describes (1) its associated model (and model 
type), (2) the types of values that it reports and the associated model properties, and (3) 
setup and configuration parameters. 

Each gauge has a type. A gauge type specification describes the shared features of 
instances of a gauge type. A gauge instance specification defines a particular gauge. A 
gauge instance includes information about the gauge that elaborates the gauge type 
specification and associates the outputs of the gauge with a particular abstract model or 
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elements of a model. For example an instance of the transfer time gauge type, defined in 
Table 1, would identify the IP address set-up parameters, a default “frequency of 
sampling” control parameter, and indicate the model and connector for which it is 
calculating the transfer time value. 

A gauge type specification is a tuple consisting of the following parts:  
1. The name of the gauge type: for example, XferTime_Gauge_T; 
2. The set of values reported by the gauge (specified using a name and a type): for 

example, the XferTime_Gauge_T reports one value, xferTime of type float; 
3. Setup parameters (including name, type, and default value for each parameter): 

for example, the XferTime_Gauge_T has two setup parameters: Src_IP_Addr and 
Dst_IP_Addr, which are both of type String and have no default value; 

4. Configuration parameters (including name, type, and default value for each 
parameter): for example, the XferTime_Gauge_T has one configuration parameter 
Sampling_Frequency, which is of type milliseconds with a default value of 50. 
The sets of configuration parameters and setup parameters are not necessarily 
disjoint. A default value should be provided for each configuration parameter that 
is not in the set of setup parameters.6  

5. Comments: these explain in more detail what a gauge does and how to interpret 
the values (the values’ units, accuracies, etc.) and provide more detail about the 
functionality of the gauge. 

To illustrate this definition, Table 1 describes a gauge type for the gauge G in Figure 
4 that measures the transfer time value in milliseconds, represented as a floating point 
number. 

Table 1. An Example of Gauge Type Specification. 
Gauge Type XferTime_Gauge_T 

Reported Values xferTime: float 

Setup Parameters Src_IP_Addr: String [default=””] 

Dst_IP_Addr: String [default=””] 

Configuration Parameters Sampling_Frequency: int 
[default=50] 

Comments Latency_Gauge_T measures network 
latency of a connector whose 
endpoints are defined by a source 
and destination IP address.  

How a given gauge type is instantiated is described in a gauge instance specification 
as a tuple consisting of the following parts:  

1. The name and type of the gauge instance: for example, G is the name of the 
latency gauge in Figure 4, which is of gauge type XferTime_Gauge_T; 

                                                 
6 Currently only literal values are allowed for setup and configuration parameters. 
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2. The name and type of the model that the gauge is associated with: for example, G 
is associated with a model called File_Sender, which is of type Acme; 

3. Mappings from values reported by the gauge to the associated model properties. 
Each mapping is a tuple of <GaugeValue, ModelProperty>, meaning that the 
GaugeValue actually reflects the value of ModelProperty: for example, the 
mapping for G is <xferTime, L.xferTime>;  

4. Setup values: these can be statically specified or dynamically provided upon 
gauge creation. If no value is provided, the default value of this gauge type should 
be used; 

5. Configuration values: these can be statically specified or provided at run-time. If 
no value is provided when the gauge is created, the default value for this gauge 
type should be used. 

6. Comments: to describe more details of the gauge’s function. 
Table 2 specifies the gauge instance G that we discussed in the previous example. 

Table 2. An Example of Gauge Instance Specification. 
Gauge Name: Gauge Type G: XferTime_Gauge_T 

Model Name: Model Type File_Sender : Acme 

Mapping <xferTime, L.xferTime> 

Setup Values Src_IP_Addr = L.src.IP1;  

Dst_IP_Addr = L.snk.IP2; 

Configuration Values Sample_Frequency = 100 

Comments G is associated with the L 
Connector of the system, 
File_Sender, defined as an Acme 
model. 

 

The above definition of gauges is very general, can be applied to a wide variety of 
monitoring needs, models, or modeling languages.  

3.1.2. Implementation 
To this point we have described generally the way that gauges are specified, and how 

they are used to monitor a system. Given this general infrastructure, we have 
experimented with a set of tools and techniques that allow monitoring in the context of 
Acme models. This section describes the state of our implementation. 
Attaching Gauges to Acme Descriptions 

As indicated earlier, gauges are used to interpret observations of the running system 
in the context of an architectural model. These observations form part of the semantics of 
the system and therefore should be mapped to the semantics of the architecture. Acme is 
a general-purpose architecture description language that is style-independent. Although 
particular styles can be defined in the Acme language, the building blocks of an 
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architecture are generic components and connectors, with associated properties that do 
not have any inherent meaning. Styles are defined by specifying particular properties to 
be associated with particular types of components, and also in defining constraints that 
can be used to do some semantic analysis of the style. Furthermore, analysis tools can 
analyze certain properties in an architecture to arrive at some conclusion about the 
correctness of the architecture according to the analysis.  

Because the semantics of an architecture are captured in the property mechanism of 
Acme, gauges are attached to Acme properties. The meaning of this is that the value(s) 
reported by a gauge are actually values of the properties to which they are attached. In 
this way, architecture-based analysis tools can observe these changing properties. For 
example, design constraints over the properties in an architecture can be re-evaluated 
when a property value changes dynamically as reported by a gauge. This allows other 
tools that analyze Acme properties to be used dynamically. Attaching gauges to 
properties also means that tools that currently work with Acme descriptions need not 
change when gauges are added. 

To attach a gauge to an Acme property, it is first necessary to define the gauge as a 
property of the system. The property Ggauge in the file_sender system in Figure 5 
defines a gauge and gives it a name, a type, and defines the setup and configuration 
parameters. The type of this property (XferTime_Gauge_spec) is defined in the family of 
which the system is an instance. Tools can determine that this is a gauge by looking at the 
meta-property isGauge: if it is defined, then that property is intended to be a gauge.7 
Figure 5 also shows an Acme description of a connector L. The fact that a property is a 
gauged value (and therefore its value is assigned at runtime) is set by having the meta-
property gauged associated with the property. The next meta-property (gauge) defines the 
name and type of the gauge, which gauge value is mapped to this particular property, and 
the setup and configuration parameters. The Acme gauge specification in Figure 5 
corresponds to the gauge instance specification in Table 2. The gauge meta-property is an 
Acme record that is defined elsewhere in the Acme description. Each gauge type has a 
corresponding Acme record type. These records can be generated automatically from the 
gauge type specification. 

                                                 
7 Meta-properties are currently used in Acme to assign details like default values or units of measure and 
enclosed by << >>. 

System file_sender : GaugedClientServerFam = { 
 property Ggauge : XferTime_Gauge_spec = [ 
  name = “G”; 
  gaugeType = XferTime_Gauge_T; 
  setup = [ Src_IP_Addr = “barossa.cs.cmu.edu”; 
       Dst_IP_Addr = “hunter.cs.cmu.edu” 
  ]; 
  configuration = [Sampling_Frequency = 100.0]; 
 ] <<isGauge : boolean = true;>>; 

 … 

 connector L = { 
  role src; 
  role snk; 
  property xferTime : float 
   << gauged : boolean = true; 
     gauge = [ 
      name = “G”; 
      value = xferTime 
     ]; 
    >>; 
  }; 
}; 

Figure 5. Attaching Gauges to Systems in Acme. 
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Tool Support for Gauges 

Based on the definition of gauges given above, we have developed an implementation 
of the gauge infrastructure that provides a set of Java classes and interfaces, and uses the 
Siena wide-area event notification system [3] as the communication substrate through 
which events are communicated between gauges and their consumers. The class 
hierarchy for this implementation is presented in Figure 6. The classes provided by the 
infrastructure are shown in the middle of the figure; the interfaces that need to be 
implemented for particular gauges or gauge consumers are at the top of the figure. This 
implementation hides the communication mechanism used to send the events. In fact, we 
have one implementation that uses Siena, and another that transparently utilizes Java 
Remote Method Invocation (RMI) to transport events – in either case, the code that the 
Gauge Developer or Gauge Consumer Developer has to write is exactly the same, 
allowing portability across communication mechanisms.  

An Acme description with a set of attached gauges can be used to generate the gauge 
instances so that consumers can listen to those messages. We have written a tool that does 
this, and also generates the necessary code to connect with our design environment, 
AcmeStudio, which can be used to display the gauge outputs dynamically.8 Figure 7 
shows the process by which this is achieved. The Gauge Generator takes the Acme file 
and produces a Monitoring Tool. This tool, when executed, will create and configure the 
gauge instances (by connecting with the appropriate gauge managers), and uses the 

                                                 
8 This tool is currently being implemented and will be ready by the time camera-ready copies of the paper 
are due. 

 

Figure 6. Gauge Infrastructure Implementation. 
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Common Object Model (COM) interface of AcmeStudio to load the Acme description, 
start listening for gauge values, and propagate these values to AcmeStudio. 

3.1.3. Gauge Workbench 
The gauge specifier is a Java application for specifying gauge types. Gauge types define 
the values reported by instances of these gauges, the parameters required to create a 
gauge (called the setup parameters), and the parameters that may be used to configure 
instances as they run. The gauge specifier provides a GUI front end to this specification. 
The output of the specifier is:  

• Acme Families: that define the gauge type for use within AcmeStudio. This 
allows gauge instances to be attached to Acme designs and created from within 
AcmeStudio.  

• Gauge Implementation Stubs: Generate Java stubs for gauges and gauge 
managers that integrate with the CMU Gauge Infrastructure. The aim is that the 
gauge developer has to write the minimal amount of code to have a gauge 
implemented.  

3.2. Gauges 
Gauges interpret system-specific information in the context of an architectural model. 
During the period of this grant, we investigated three different types of gauges. 

3.2.1. Network Performance Gauges 
Network Performance Gauges measure characteristics of the network and report these as 
properties in an architectural model. We have developed probes for gathering information 
about networks, based on the Remos system [10]. Remos has two parts: 1) an API, which 
allows applications to issue queries about bandwidth and latency between groups of 
hosts, implemented as a library that is linked with applications; and 2) a set of servers, 
called collectors, that collect information about different parts of the network. A probe 
uses Remos to collect the information required for the probe (such as bandwidth and 
latency) and distributes it as events using the DASADA Probe Infrastructure Protocol. 

Gauge
Generator

Acme
File

Monitoring
Tool

 

Figure 7. Generating Gauges from Acme Descriptions. 
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Our performance gauges listen to this information and perform calculations and 
transformations to relate it to the architectural model of a system. 

3.2.2. Protocol Gauges 
In addition to providing information about the network performance, we have developed 
gauges that monitor the specified behavior of a system. These gauges take protocols 
specified in Finite State Processes (FSP) [11] and then monitor method calls in the 
system to see if the protocol is being followed in the running system. Protocols are 
specified as properties in an architectural model; a tool extracts these protocols and feeds 
them into gauges that interpret the protocol. The protocol gauges listen to probes that 
report method invocations in the running system and relate them to events in the protocol. 
The gauges then report the success or failure of the protocol to the architectural model. 

3.2.3. Architecture Gauges 
The Rainbow implementation currently assumes that the architectural model is consistent 
with the system. This is not necessarily the case – and, in fact, the architectural model of 
a system may not even be reliably known. In order to address this, we have developed 
technology, called DiscoTect, to monitor a running system and extract its architecture. 
The technology essentially uses state machines to monitor events in the running system 
and emit architectural events to create an architectural model. Details of this work can be 
found in [24]. 

3.3. Repair 
In addition to providing tools to specify gauges and implement monitoring of a system, 
we have developed some infrastructure to handle and specify repairs. The Tailor repair 
engine is infrastructure that can be called when a constraint fails, and interprets repair 
strategies to determine the repairs that should take place. Currently, Tailor uses a simple 
scheme for interpreting repairs in a linear fashion; future research will look at making 
Tailor more intelligent to include learning which repairs have a history of working, for 
example. 

In order to specify repairs, we have designed a language (examples of which appear 
in Section 4.1), that allows a designer to write the architectural repairs. Currently, we 
hand-translate these repairs into Java code that we can plug into the infrastructure. 

3.4. Integration with Acme Tools 
So far, we have discussed the tools that have been used for architectural design, and 
given details of some design-time Acme tools that are used to construct and analyze 
architectures. If we are using software architectural models and analyses to guide 
dynamic adaptation, then it is useful to use these tools at runtime. This approach 
preserves continuity between design time and runtime views of the system, and maintains 
uniformity of the types of analyses that are performed at runtime and their meaning with 
respect to the design-time architectural artifacts. 

Given that we want to use existing architectural tools at runtime, the question arises 
as to what role they should play in runtime adaptation, how they should be adapted to be 
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used in the dynamic context, and what additional tools are required. The guiding 
principle should be to maintain the separation of concerns that exist in the framework 
outlined earlier, thus separating the different kinds of expertise required into different 
appropriate tools, rather than attempting to develop a monolithic tool to perform all 
aspects of adaptation.  

While we discuss this with respect to some Acme-based architecture tools, we believe 
that analogous modifications will need to be made to any architecture tool to fit into the 
general adaptation framework of Figure 1.  

Within the framework, the different separations of concern are: 

• the use of different architectural views and analyses, that may in fact exist in 
several design-time tools; 

• the ability to monitor different attributes of the architecture at different times 
in execution; 

• the desire to experiment with different types of repair strategies in the 
framework; and 

• the fact that there may be many mappings from a particular architectural 
model expressed in a particular architectural style to an implementation of that 
system. 

Thus, in the design of our toolset we have modified our existing design-time tools to 
observe and analyze the architecture, and developed new tools to capture the knowledge 
particular to each concern. 
3.4.1. Changes to Existing Tools 
The changes to our existing toolset fall broadly into the following categories: 

• Interfaces that allow the architectural model to be changed dynamically. 

• Integration points between architectural analysis tools and facilities to effect a 
repair should analysis determine something is wrong. 

• Facilities to allow a designer to indicate points in the architecture that should 
be monitored, and the types of monitoring that should be conducted. 

• Addressing the scalability issues with conducting analysis at runtime, in 
reaction to observations of the executing system. 

We show how we addressed these categories in the case of AcmeStudio and Armani. 

AcmeStudio: The role of AcmeStudio in the dynamic adaptation framework is 
twofold. First, it is still used at design time to define the architecture. For this stage, 
AcmeStudio has been extended to allow gauges to be attached to points in the 
architecture. Once again, this is based on families – families define which gauge types are 
available to a system. If a family defines such gauge types, instances can be dropped onto 
the design and attached to properties in the architecture. An external tool is called by 
AcmeStudio to start the gauges and begin reporting values. 
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The second role of AcmeStudio is as an observation tool in the adaptation framework. 
Once the system is started, AcmeStudio is no longer used to edit the architecture – in fact, 
it observes the changes made to the architecture by other tools. To facilitate this role, 
AcmeStudio has been extended with a COM interface through which gauges can report 
changing property values. The COM interface also contains routines to change the 
architectural model – create, delete, or modify components, connectors, etc. In this way, 
tools that do the actual analysis and modification can inform AcmeStudio, so that the 
changed architecture can be viewed. For example, if a gauge detects an overloaded 
server, it can report this fact as the sOverloaded property of the corresponding architectural 
component. AcmeStudio, using existing visual variants, can change the component to 
light gray. 

Armani Constraint Analysis: Armani has been extended with an imperative language 
that can be used to define repair strategies to programmatically change the architecture. A 
repair strategy is associated with an Armani constraint, and is invoked when the 
constraint fails. A repair strategy is composed of a number of subsidiary constraints and 
repair tactics. This allows a repair strategy to conduct more than one change, based on 
further investigation of the problem. For example, if an Armani constraint specifying that 
latency must be below a certain threshold is violated, the repair strategy will likely 
contain tactics to address the case if the bandwidth has fallen or the load on servers has 
risen. Furthermore, repair strategies contain decision logic for choosing which of the 
tactics to apply. 

A repair strategy for this scenario is presented in Figure 12. The particular Armani 
constraint, and the particular repair strategy to invoke, are shown in lines 1-3 of the 
figure. In line 2, “! ” is a new operator that specifies that the repair strategy following is 
to be executed only if the constraint is violated. The top-level repair strategy in lines 5-
17, fixLatency, consists of two tactics, only one of which is chosen to be executed by this 
repair strategy. The first tactic in lines 19-31 handles the situation in which a server group 
is overloaded, identified by the precondition in lines 24-26. Its main action in lines 27-29 
is to create a new server in any of the overloaded server groups. The second tactic in lines 
33-48 handles the situation in which high latency is due to communication delay, 
identified by the precondition in lines 34-36. It queries the architecture to find a server 
group that will yield a higher bandwidth connection in lines 40-41. In lines 42-44, if such 
a group exists it moves the client-server connector to use the new group. 

In addition to extending the Armani language, we are investigating ways to optimize 
the performance of the constraint analysis at runtime with incremental approaches.  
3.4.2. New Architecture Tools 
The existing tools address the concerns of observation and analysis in our framework. 
However, they do not address how to implement monitoring, how to execute the repair, 
or how to map between an architecture and its implementation. 

Gauge Infrastructure: Gauges are used to propagate information about the runtime 
system to the architectural model. We have developed a gauge infrastructure that 
provides a Java class library to provide implementation stubs for gauges, and to facilitate 
communication between gauges and tools that consume gauge outputs. Because of the 
requirement for working in distributed systems, we have implemented the transport layer 
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of the gauge infrastructure using both the Siena wide area event notification system from 
the University of Colorado [3].  

Tailor Repair: In concert with the repair extension to Armani, we are developing tools 
that provide runtime execution of these repairs. The goal of Tailor is to execute repairs 
that return an erroneous architecture to one that conforms to its style and constraints. 
Tailor listens to gauges for values associated with the model it is trying to maintain. It 
then invokes Armani to check if any constraints are violated. If they are, it executes the 
appropriate repair tactics. Tailor is decoupled from the executing system, and indeed can 
run on a machine independent of the running system. In this way, we anticipate that 
monitoring and repair at the architectural level will not unduly impede the running 
system. 

Mapping Between Architecture and Implementation: Currently in our toolset we 
assume that gauges provide a mapping between runtime observations and architectural 
observations. In fact, this is just one example of mapping that is required throughout the 
framework. For our approach to be effective, we require a two-way mapping between 
information in the runtime and information in the architecture. Both directions are 
required by Tailor. A mapping from the implementation to the architecture is required 
when Tailor investigates the state of the running system to determine the best tactic (for 
example Tailor may need to determine which server group to move a client to). The 
mapping from the architecture to the runtime system is required when Tailor issues 
architectural changes that need to be reflected in the implementation. For example, Tailor 
may issue the architectural repair to add a Server component, which needs to be 
translated to starting a server process on a particular host and joining a particular server 
group. We are not assuming that the architecture to implementation mapping is one-to-
one. Indeed, a particular architectural style, for example a client server architecture, could 
be associated with many “implementation styles.” Currently, this information is captured 
in the Translator component of our framework and we are investigating methods of 
generalizing this component so that we can specify the transformations for multiple 
styles. Once this component is in place, it could also be used by gauges to associate 
runtime observations with architectural properties, in contrast to our current 
implementation, which embeds this information in the gauges themselves. 

3.4.3. Integrating Architectural Tools 
The development of different tools to capture specific knowledge about different aspects 
of dynamic adaptation means that these tools need to be integrated in some fashion. The 
framework in Figure 1 gives a broad outline of how to do this. 

Figure 7 provides an illustrative example of how we have integrated our tools, in 
particular when applied to adapting a client-server system. The running distributed client-
server system is on the left of the figure, and consists of three clients, three servers, and a 
request queue component. Clients make requests to the request queue and servers serve 
requests that they pull from the request queue. To instrument this system, each 
component is run inside an AIDE shell [9], which allows us to probe the method calls 
inside the component. This implementation corresponds to the example reported in 
Section 4, which calls for adaptation if the latency rises above 2 seconds. Using our tools 
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to commence the adaptation requires several steps. It is assumed that the system is 
running, and that the architecture for this system is already defined. 

1. AcmeStudio is used to attach gauges to various properties of the architecture. In our 
example, we attach gauges to the server load property of the request queue 
component of the architecture, and two gauges to each of the client roles in the 
architecture – one to report the bandwidth and one to report the average latency 
experienced by clients attached to the role. 

2. To start the gauges, AcmeStudio invokes the Gauge Extractor tool, which 
communicates via RMI with a Gauge Agent. The Gauge Agent is the mediator 
between gauges and AcmeStudio.  

3. The Gauge Agent locates Gauge Managers to start particular gauges and then creates 
the required gauges (in the middle of the figure).  

4. These gauges create the necessary implementation probes. The probes in this example 
report every time the newRequest method is called in a client, and also the size of the 
response corresponding to the request. A probe in the Request Queue reports the size of 
the queue. 

5. The gauges interpret this low-level, method-call information into high level latency 
and bandwidth values and report these values to the gauge bus. 

6. The Gauge Agent reports gauge values to AcmeStudio, which can display the results. 

Client1 Client2 Client3 
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AIDE Shell 
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7. Concurrently, Tailor listens to the gauge bus and evaluates Armani constraints to 
determine if the system is still performing acceptably. If not, it makes changes to its 
internal model of the architecture and reports these changes to AcmeStudio, via the 
COM interface, and the Runtime Manager, via RMI.  

8. The Runtime Manager in this example contains a simple table-based mapping 
between architectural changes and runtime changes, and performs the necessary 
changes in the runtime based on the repair tactic chosen by Tailor.  

4. Case Studies 

4.1. Performance-based Adaptation of a Web-based Client-Server 
System 
In this section we give a detailed end-to-end description of how each of the elements in 
our adaptation framework come together to achieve runtime adaptation. We use the 
example described in Section 2 to illustrate our technique. The example is simple load 
balancing of a web-based client-server system. This example is used simply to illustrate 
how our technique works; we are not proposing that this technique be applied to load-
balancing of such systems – a technique that is already embedded in many systems. 

4.1.1. Defining a Client-Server Architectural Style 
Figure 9 contains a partial description of the style used to characterize the class of web-
based systems of our example. The style is actually defined in two steps. The first step 
specifies a generic client-server style (called a family in Acme). It defines a set of 
component types: a web client type (ClientT), a server group type (ServerGroupT), and a server 
type (ServerT). It also defines a connector type (LinkT). Constraints on the style (appearing in 
the definition of LinkT) guarantee that the link has only one role for the server. Other 
constraints, not shown, further define structural rules (for example, that each client must 
be connected to a server). 

Family ClientServerFam = { 
 Component Type ClientT = {…}; 
 Component Type ServerT = {…}; 
 
  Component Type ServerGroupT = {…}; 
 
 Role Type ClientRoleT = {…}; 
 Role Type ServerRoleT = {…}; 
 
 Connector Type LinkT = { 
  invariant size(select r : role in Self.Roles |  
        declaresType(r, ServerRoleT)) == 1; 
      invariant size(select r : role in Self.Roles |  
         declaresType(r, ClientRoleT)) >= 1; 
      Role ClientRole1 : ClientRoleT; 
      Role ServerRole : ServerRoleT; 
 }; 
}; 
 Figure 9. Client/Server Style Definition. 
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There are potentially many possible kinds of analysis that one might carry out on 
client-server systems built in this style. Since we are particularly concerned with overall 
system performance, we augment the client-server style to include performance-oriented 
properties. These include the response time and degree of replication for servers and the 
delay time over links. This style extension is shown in Figure 10. Constraints on this style 
capture the desired performance related behavior of the system. The first constraint, 
associated with PAServerGroupT, specifies that a server group should not be under-utilized. 
The second constraint, as part of the PAClientRoleT, specifies that the latency on this role 
should not be above some specified maximum. 

Having defined an appropriate style, we can now define a particular system 
configuration in that style, such as the one illustrated in Figure 11.  

4.1.2. Using M/M/m Performance Analysis to Set Initial Conditions 
The use of buffered request queues, together with replicated servers, suggests using 
queuing theory to understand the performance characteristics of systems built in the 
client-server style above. As we have shown elsewhere, for certain architectural styles 
queuing theory is useful for determining various architectural properties including system 

Family PerformanceClientServerFam extends ClientServerFam with { 
 Component Type PAClientT extends ClientT with { 
  Properties  { 
   Requests : sequence <any>; 
   ResponseTime : float; 
   ServiceTime : float; 
  }; 
 }; 
 Connector Type PALinkT extends LinkT with { 
  Properties { 
   DelayTime : float; 
  }; 
 }; 
 Component Type PAServerGroupT extends ServerGroupT with { 
  Properties { 
   Replication : int <<default : int = 1;>>; 
   Requests : sequence <any>; 
   ResponseTime : float; 
   ServiceTime : float; 
   AvgLoad : float; 
  }; 
  Invariant AvgLoad > minLoad; 
 }; 
 Role Type PAClientRoleT extends ClientRoleT with { 
  Property averageLatency : float; 
  Invariant averageLatency < maxLatency; 
 }; 
 
 Property maxLatency : float; 
 Property minLoad : float; 
}; 

Figure 10. Client/Server Style Extended for 
Analysis. 
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response time, server response time (Ts), average length of request queues (Qs), expected 
degree of server utilization (us), and location of bottlenecks. 

In the case of our example style, we have an ideal candidate for M/M/m analysis.  
The M/M indicates that the probability of a request arriving at component s, and the 
probability of component s finishing a request it is currently servicing, are assumed to be 
exponential distributions (also called “memoryless,” independent of past events); requests 
are further assumed to be, at any point in time, either waiting in one component’s queue, 
receiving service from one component, or traveling on one connector.  The m indicates 
the replication of component s; that is, component s is not limited to representing a single 
server, but rather can represent a server group of m servers that are fed from a single 
queue.  Given estimates for clients’ request generation rates and servers’ service times 
(the time that it takes to service one request), we can derive performance estimates for 
components according to Table 3. To calculate the expected system response time for a 
request, we must also estimate the average delay Dc imposed by each connector c, and 
calculate, for each component s and connector c, the average number of times (Vs, Vc) it 
is visited by that request.  (Given Vs and the rates at which client components generate 
requests, we can derive rather than estimate Rs, the rate at which requests arrive at server 
group s.) 

Applying this M/M/m theory to our style tells us that with respect to the average 
latency for servicing client requests, the key design parameters in our style are (a) the 
replication factor m of servers within a server group, (b) the communication delay D 
between clients and servers, (c) the arrival rate R of client requests and (d) the service 
time S of servers within a server group.   

In previous work [18] we showed how to use this analysis to provide an initial 
configuration of the system based on estimates of these four parameters. In particular, 
Equation (5) in Table 1 indicates for each server group a design tradeoff between 
utilization (underutilized servers may waste resources, but provide faster service) and 
response time. Utilization is in turn affected by service time and replication. Thus, given 
a range of acceptable utilization and response time, if we choose service time then 

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Client1 Client2 Client3 Client4 Client5 Client6

ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Figure 11. Architectural Model of Example 
System. 

ServerGrp2ServerGrp3



 

 

 

 

29

replication is constrained to some range (or vice versa). As we will show in the next 
section, we can also use this observation to determine sound run time adaptation policies. 

We can use the performance analysis to decide the following questions about our 
architecture, assuming that the requirements for the initial system configuration are that 
for six clients each client must receive a latency not exceeding 2 seconds for each request 
and a server group must have a utilization of between 70% and 80%: 

• How many replicated servers must exist in a server group so that the server 
group is properly utilized? 

• Where should the server group be placed so that the bandwidth (modeled as 
the delay in a connector) leads to latency not exceeding 2 seconds? 

Given a particular service time and arrival rate, performance analysis of this model 
gives a range of possible values for server utilization, replication, latencies, and system 
response time. We can use Equation (5) to give us an initial replication count and 
Equation (6) to give us a lower bound on the bandwidth. If we assume that the arrival rate 
is 180 requests/sec, the server response time is between 10ms and 20ms the average 
request size is 0.5KB, and the average response size is 20KB, then the performance 
analysis gives us the following bounds: 

Initial server replication count= 3-5 
Zero-delay System Response Time = 0.013-0.026 seconds 

Therefore, 
0 < Round-trip connector delay < 1.972 seconds, or 
0 < Average connector delay < .986 seconds 
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Thus, the average bandwidth over the connector must be greater than 10.4KB/sec. 
This analysis provides several key criteria for monitoring the running system. First, if 
latency increases undesirably, then we should check to ensure that the bandwidth 
assumption still holds between a client and its server. Second, if bandwidth is not the 
causing factor, then we should examine the load on the server. 

4.1.3. Defining Adaptation Operators 
The client-server architectural style suggests a set of style-specific adaptation operators 
that change the architecture while ensuring the style constraints. These operators are: 

• addServer(): This operation is applied to a component of type ServerGroupT and 
adds a new component of type ServerT to its representation, ensuring that there 
is a binding between its port and the ServerGroup’s port. 

• move(to:ServerGroupT): This operation is applied to a client and first deletes 
the role currently connecting the client to the connector that connects it to a 
server group. It then performs the necessary attachment to a LinkT connector 
that will connect it to the server group passed in as a parameter. If no such 
connector exists, it will create one and connect it to the server group. 

• remove(): This operation is applied to a server and deletes the server from its 
containing server group. Furthermore, it changes the replication count on the 
server group and deletes the binding. 

The above operations all effect changes to the model. The next operation queries the 
state of the running system: 

• findGoodSGroup(cl:ClientT,bw:float):ServerGroupT;  finds the server group 
with the best bandwidth (above bw) to the client cli, and returns a reference to 
the server group. 

These operators reflect the considerations just outlined. First, from the nature of a 
server group, we get the operations of adding or removing a server from a group. Also, 
from the nature of the asynchronous request connectors, we get the operations of adapting 
the communication path between particular clients and server groups. Second, based on 
the knowledge of supported system change operations, outlined in Section 4.4, we have 
some confidence that the architectural operations are actually achievable in the executing 
system. 

4.1.4. Defining Repair Strategies to Maintain Performance 
Recall that the queuing theory analysis points to several possible causes for why latency 
could increase. Given these possibilities, we can show how the repair strategy developed 
from this theoretical analysis. The equations for calculating latency for a service request 
(Table 3) indicate that there are four contributing factors: (1) the connector delay, (2) the 
server replication count, (3) the average client request rate, and (4) the average server 
service time. Of these we have control over the first two. When the latency is high, we 
can decrease the connector delay (by moving clients to servers that are closer) or increase 
the server replication count to decrease the latency. Determining which tactic depends on 
whether the connector has a low bandwidth (inversely proportional to connector delay) or 
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if the server group is heavily loaded (inversely proportional to replication). These two 
system properties form the preconditions to the tactics; we have thus developed a repair 
strategy with two tactics. 
Applying the Approach 

We specify repair strategies using a repair language that supports basic flow control, 
Armani constraints, and simple transaction semantics. Each constraint in an architectural 

01 invariant r.averageLatency <= maxLatency 
02 !  
03  fixLatency(r); 
04 
05 strategy fixLatency (badRole: ClientRoleT) = { 
06  begin repair-transaction; 
07  let badClient: ClienT = 
08   select one cli: ClientT in self.Components | 
09    exists p: RequestT in cli.Ports | attached(badRole, p); 
10  if (fixServerLoad(badClient)) { 
11   commit repair-transaction; 
12  else if (fixBandwidth(badClient, badRole) { 
13   commit repair-transaction; 
14  } else { 
15   abort(ModelError); 
16  } 
17 } 
18 
19 tactic fixServerLoad (client: ClientT) : boolean = { 
20  let overloadedServerGroups: Set{ServerGroupT} = 
21   { select sgrp: ServerGroupT in self.Components | 
22    connected(sgrp, client) and 
23    sgrp.AvgLoad > maxServerLoad }; 
24  if (size(overloadedServerGroups) == 0) { 
25   return false; 
26  } 
27  foreach sGrp in overloadedServerGroups { 
28   sGrp.addServer(); 
29  } 
30  return (size(overloadedServerGroups) > 0); 
31 } 
32 
33 tactic fixBandwidth (client: ClientT, role: ClientRoleT) : boolean = { 
34  if (role.Bandwidth >= minBandwidth) { 
35   return false; 
36  } 
37  let oldSGrp: ServerGroupT = 
38   select one sGrp: ServerGroupT in self.Components | 
39    connected(client, sGrp); 
40  let goodSGrp: ServerGroupT = 
41   findGoodSGrp(client, minBandwidth); 
42  if (goodSGrp != nil) { 
43   client.moveClient(oldSGrp, goodSGrp); 
44   return true; 
45  } else { 
46   abort(NoServerGroupFound); 
47  } 
48 } 

Figure 12. Repair Tactic for High Latency. 
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model can be associated with a repair strategy, which in turn employs one or more repair 
tactics. 

 Figure 12 (lines 1-3) illustrates the repair strategy associated with the latency 
threshold constraint. In line 2, “! ” denotes “if constraint violated, then execute.” The 
top-level repair strategy in lines 5-17, fixLatency, consists of two tactics. The first tactic in 
lines 19-31 handles the situation in which a server group is overloaded, identified by the 
precondition in lines 24-26. Its main action in lines 27-29 is to create a new server in any 
of the overloaded server groups. The second tactic in lines 33-48 handles the situation in 
which high latency is due to communication delay, identified by the precondition in lines 
34-36. It queries the running system to find a server group that will yield a higher 
bandwidth connection in lines 40-41. In lines 42-44, if such a group exists it moves the 
client-server connector to use the new group. The result of an instance of this repair on 
Figure 6 is depicted in Figure 8. The repair strategy uses a policy in which it executes 
these two tactics sequentially: if the first tactic succeeds it commits the repair strategy; 
otherwise it executes the second. The strategy will abort if neither tactic succeeds, or if 
the second tactic finds that it cannot proceed since there are no suitable server groups to 
move the connection to.  

4.1.5. Style-Based Monitoring 
In our example above we are concerned with the average latency of client requests. To 
monitor this property, we must associate a gauge with the averageLatency property of each 
client role (see the definition of PAClientRoleT in Figure 10). This latency gauge in turn 
deploys a probe into the implementation that monitors the timing of reply-request pairs. 
When it receives such monitored values it averages them over some window, updating 
the latency property in the architecture model when it changes. The latency gauge that we 
use is not specific to this style, or indeed to this implementation. The gauges utilizes 
probes that use the Remos network monitoring service, which in turn uses the SNMP to 
ascertain properties of the network. 

But average latency is not the only architectural property that we need to monitor. 
The repair tactics, derived from queuing theoretic model of performance analysis, rely on 
information about two additional constraints: whether the bandwidth between the client 
and the server is low or whether the server group is overloaded (or both). Thus, to 
determine why latency is high in the architecture, we need to monitor these two 
properties. The gauge for measuring bandwidth uses the same probe used by the latency 
gauge for measuring the time it takes to receive a reply. An additional probe measures the 
size of the reply and calculates the bandwidth based on these values. Determining the 
load on the server can be done in a number of ways. We measure the size of a request 
queue to indicate whether the server group is overloaded. 
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4.1.6. Mapping Architectural Operators to Implementation Operators 
To illustrate, the specific operators and queries supported by the Runtime Manager in our 
example are listed in Table 4. These operators include low-level routines for creating new 
request queues, activating and deactivating servers, and moving client communications to 
a new queue. 

The Translator for our example maps the Style API Interpreter operations described in Section 
4.1.3 to the Runtime Manager operations using the scheme summarized in Table 4. 
(Parameters passed between the levels also need to be translated. We do not discuss this 
here.) The actual map involves mapping model-level parameters to implementation level 
parameters, and mapping return values to model values. 

4.1.7. Putting the Pieces Together 
As an example of how the adaptation framework fits together in our implementation, we 
will consider one cycle of the repair, starting with a latency probe reporting a value, and 
ending with a client moving to a new server group. This cycle indicates how the 
architecture in Figure 11 is transformed into the architecture in Figure 13. 

1. The bandwidth probe on the link between Client4 and ServerGroup1 reports a 
bandwidth of 18KB/sec to the probe bus. 

2. The latency gauge attached to Client4’s role combines this value with the average 
size of requests that it has seen, and calculates an average latency of 2.5secs, 
which it reports to the gauge bus. Similarly, the bandwidth gauge attached to 
Client4’s role reports a bandwidth of 18KB/sec to the gauge bus. 

3. The Architecture Manager, implemented as a gauge consumer, receives these 
values and adjusts the averageLatency and bandwidth properties of Client4’s role.  

4. The Analyzer, implemented using our Armani constraint analyzer, reevaluates 
constraints. The constraint averageLatency < maxLatency in Client4’s role fails. 

5. Tailor, the repair handler, is invoked and pauses monitoring before starting to 

Table 4. Mapping Between Architecture and Implementation Operations. 
Model Level Environment Level 

addServer 
findServer 

activateServer 
connectServer 

moveClient createReqQue 
moveClient 

findGoodSGrp
Conditionals + 

multiple calls to 
remos_get_flow 
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execute the repair strategy in Figure 12, passing Client4’s role as a parameter. 

6. The repair strategy first attempts to fix the server load, but returns false 
because no servers are overloaded. 

7. The repair strategy attempts to fix the bandwidth. It examines the bandwidth 
property of the role, and determines that it is larger than 10.4KB/sec (line 34). 
It then calls the architectural operator findGoodSGrp to find the server group with 
the best bandwidth. This invokes queries to remos_get_flow. 

8. The operator findGoodSGrp returns ServerGroup2 now has the best bandwidth and 
initiates the moveClient operator (line 43). This in turn invokes the change 
interface for the application to effect the move. 

4.1.8. Results 
We conducted an experiment to test the effectiveness of our adaptation framework on a 
system that has no built-in adaptation, and to elucidate the portions of our framework that 
needed more investigation. 

The implementation that we used for our experiment was based on the example 
presented in this paper – that of a client-server system using replicated server groups 
communicating over a distributed system. We used this example because the architectural 
style of the system is amenable to automatic performance analysis [18], the results of 
which we can use to guide the development of our repairs.  

This system is implemented in Java and has a set of change operations corresponding 
to the operations in Table 4, that are called via RMI to change the system. The clients 
send requests to an entity that splits the requests into queues, corresponding to the client’s 
server group. Servers in a group pull information from the appropriate queue, and send a 
reply. The size of the reply is indicated by the client request. 

The requirements and assumptions that fed into our analysis are: 

Client
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(ServerGrpRep)
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Figure 13. Model of System After Low Bandwidth Repair. 
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• We desire the maximum average latency experienced by clients to be less than 
2 seconds 

• The size of client requests is small (0.5K on average) compared to server 
responses (20K on average). 

• The average arrival rate of requests is approximately six per second. 

Given these inputs, we calculated that an initial starting point of 3 replicated servers 
in one server group would be sufficient to serve our six clients, and that the bandwidth 
between the clients and servers should not be less than 10Kbps. Our experiment 
measured the effectiveness of our approach as compared to not using our approach. 
 Experimental Design 

The experiment was conducted in a distributed setting inside a dedicated experimental 
testbed consisting of five routers and eleven machines (depicted in Figure 14), in which 
we deployed the client-server system. Because we had access to fewer machines than 
processes, Clients 1 and 2 (C1 and C2 in the figure) share a machine, and the request 
queue shares a machine with Server 5 (S5). In the initial state, Servers 4 and 7 were spare 
servers that we could activate as repairs warranted. The routers are connected via 10Mbps 
links; each application node is connected to a router by a connection that is at least 
10Mbps. The repair infrastructure was restricted to the machine running Server 4 (the 
thick ellipse in Figure 14), except for those parts of the infrastructure associated with 
monitoring and communication of observations, which were distributed throughout the 
environment. 
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S3 
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Figure 14. The Experimental Testbed. 
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To measure the effectiveness of our approach, we examined how often the latency of 
any client exceeded two seconds, whether our repair was effective in reducing the latency 
to the required bounds, and how this compared with the latency experienced when our 
repairs were not conducted (the control). Because we used a network of machines, we 
were unable to eliminate all of the variables between the control and our experiment runs. 
However, we attempted to control as many variables as possible by: (1) seeding the 
clients so that the size of requests and responses occurred in the same sequence in both 
experiments, (2) executing a program that generates the same bandwidth competition for 
each experiment, and (3) isolating the network from outside traffic and users. 

To ensure that repairs occurred, we needed to arrange the bandwidth competition so 
that there were periods of time where the bandwidth would cause the latency of some 
clients to be high. Similarly, the clients were controlled so that they requested larger 
amounts of information more frequently for a period of time. In this way, we ensured that 
there were periods of time during which the assumptions made in architectural 
performance analysis were invalid, and so that repairs were required.  

The control and the experiment runs were executed under the conditions described 
above for a period of thirty minutes each. Figure 15 shows the stepping functions we used 
for generating bandwidth competition and server load. In the first two minutes, we ran the 
system in a quiescent state to give our gauges, probes, and system time to deploy and 
connect. In the following 8 minutes, we raised the bandwidth between the machines 
running Clients 3 and 4 (C3&4) and the machines representing Server Group 1 (SG1). In 
this period we would expect our repair strategies to migrate these clients to Server Group 
2 (SG2). In the period 10 minutes to 20 minutes, we increased the server loads by 
increasing the file request size and rate of messages sent from all clients (20KB, twice 
every second), while reducing the bandwidth to SG1. In the final 10 minutes, we 
increased the bandwidth between C3&4 and SG2. During the periods of high bandwidth 
between C3&4 and their respective server groups, we maintained moderate bandwidth 
(3Mbps) between the opposite server groups. We needed to restrict the competition in 
this way because of the limited resources on our testbed. In future work, we plan to run 
the experiments with more realistic bandwidth data, based on network traffic to Carnegie 
Mellon’s web server. 
Results

60 120 180

9Mbps 5Mbps

Time (seconds) 
Figure 15. Bandwidth and Server Load Generation. 
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The results for the control run (without adaptation) are shown in Figure  through 

Figure . The average latency, shown in Figure , continues to rise. Once the latency rises 
to above two seconds (at approximately 140 seconds for each client), it never falls below 
this required threshold. This is because the server load and bandwidth never recover. In 
Figure 17, the server load increases dramatically as the experiment progresses. (Note that 
we measure server load by measuring the size of the queue of waiting client requests.) 
Similarly, the available bandwidth falls dramatically as the experiment progresses, as 
shown in Figure . The dashed line in both figures indicates the limits that we used to 
decide which repair tactic to execute. In Figure 17, a queue size of greater than six 
waiting requests indicated that the server was overloaded, and so the server repair should 
be tried. In Figure , an available bandwidth of less than 10Kbps indicated that there was 
not enough bandwidth. Note that for the control run, we overloaded the system so much 
that it never recovers. However, toward the end of our run the servers actually begin to 
recover. 
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Figure 16. Average Latency for Control.  
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Figure 17. Server Load for Control. 
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Figure 18.Available Bandwidth in Control. 

Figure 19. Average Latency under Repair. 

0.1

1

10

100

0 600 1200 1800

Time elapsed (s)

La
te

nc
y 

(s
)

0.01

0.1

1

10

100

0 600 1200 1800

Time elapsed (s)

A
va

ila
bl

e 
B

an
dw

id
th

 (M
bp

s)

Figure 21.Available Bandwidth with Repair. 
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Figure 19 through Figure  show the results obtained when our adaptation framework 
and repair strategies were applied under the same conditions as the control. Figure 19 
shows a dramatic improvement in the average latencies experienced by the clients. Once 
our framework detects that client latency is above two seconds, a repair is invoked (either 
to move a client or add a server), and this improves the system performance as predicted 
by our design time analysis. In each of the figures for our experiment, the duration under 
which a repair is running is indicated by the lines at the top of the graph.9 In fact, our 
framework has a positive effect on the available bandwidth because we are taking better 
advantage of different network links in our system after a repair. Our results for the 
server load show a marked improvement over the course of the experiment, except during 
the time that we increase the load on the server. During this time, we are continually 
performing repair. These repairs, encouragingly, do have a positive effect on the overall 
latency.  Figure  shows the server load experienced during the run. Note that the only 
time that the server load rises above the constrained value is when we stress the servers. 
Discussion 

The experiment indicates that the architectural approach improves the performance of the 
overall system, but further investigation is warranted under more realistic conditions. 
Repairs were conducted automatically by the system as needed, and the latency 
experienced by clients was less then two seconds for most of the time. In contrast, the 
latency experienced in the control spent a considerable amount of time over two seconds. 
When the system started to perform badly it continued to perform badly, and the 
indications were that it only started to recover toward the end of our control run. 

As noted, during the period of increased server load, repairs are continually 
performed. Due to limited resources in our testbed, we were able to recruit only two extra 
servers. Once these were activated (at times 700 seconds and 800 seconds) the only repair 
possible was to move clients. During this period, we observed some oscillation, with 
clients moving back and forth between server groups. This movement still had a positive 
effect on the system, but we believe this is an artifact of the way we stressed the servers. 
Recall that the servers were stressed by sending large amounts of data more frequently. 
Of course, this also affects the bandwidth, and so the bandwidth repair does improve the 
system.  

In running this experiment we found a number of areas on which to concentrate future 
work: 

• The time that it takes to effect a repair averages 30 seconds. Most of this time 
is spent in communicating to create and delete gauges. Improving this time by 
caching gauges or relocating them (rather than destroying and creating new 
ones) should see our repair speed improve dramatically. 

• The same network is being used to monitor the system as to run it. This means 
that when the available bandwidth is low, communication over our monitoring 
system is correspondingly slow. This produces a lag in the time when the 
bandwidth actually rises and the time it is noticed and repaired by our system. 

                                                 
9 The gradient in these lines merely clarifies the beginning and end of a repair. 
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One way to address this is to use network Quality of Service (QoS) techniques 
to prioritize monitoring traffic. 

• It is important to understand the underlying probe technology. The first 
Remos query for information about bandwidth between two nodes on the 
network takes several minutes because Remos needs to collect and analyze 
data. After this initial delay, the query is quite fast. To reduce this effect, we 
pre-queried Remos so that subsequent queries were much faster. Again, this 
reduced the time of our repairs. In general, this points to the need for more 
sophisticated probe technologies that need to be provided for caching or pre-
fetching this information. 

• In some instances, the effects of a repair on a system will take time. For 
example, adding a new server to a server group will not immediately reduce 
the overall load on the server group. Without taking this effect into account, 
unnecessary repairs are likely to occur (for example, to continue adding 
servers or to move clients). This type of delay is something that can only be 
gleaned from experience of running the repairs, and points to the need for a 
more sophisticated repair engine that can monitor repairs and their effects, and 
use this to adapt its repair policy. 

Although we do not expect our approach to compete with hand-tailored, per-
application adaptation, we believe that this approach will save time in engineering 
adaptation into applications that require it but do not possess it, in analyzing those 
repairs, and in changing them as required. However, this would be moot if the repairs did 
not improve the situation. These results show that we do get improvement by applying 
our framework – how this improvement compares to hand-tailored adaptation is an area 
of future work. 

4.2. Performance Adaptation of GeoWorlds 
In addition to the detailed case study described above, we have collaborated with 
Columbia University and Information Sciences Institute to apply our technology to 
provide load-balancing for GeoWorlds execution scripts. This is because a number of 
these scripts rely on computationally-intensive services, and these scripts needed to be 
made more resilient to service crashes and performance bottlenecks. Using probes 
developed by Columbia for monitoring GeoWorlds, we developed gauges attached to an 
architectural model of GeoWorlds that specified load constraints on the services. During 
execution of services, if the Rainbow infrastructure detected that a service load exceeded 
a threshold specified in the architectural model, Rainbow would conduct an architectural 
repair. This architectural repair was then translated into system-level repairs (carried out 
as workflakes [Workflakes]) on the GeoWorlds system. 

5. Conclusions and Future Work 
In this report, we outlined our research to generalize architecture-based dynamic 
adaptation to enable significant improvement in our ability to detect run time properties 
of complex, distributed systems, to determine whether those properties violate critical 
assumptions of a running system, and to automate system adaptation and repair in 
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response to violations of architectural assumptions. We have shown how the notion of 
software architecture needs to be modified to make it available at run time by providing 
architecture operators and repair strategies. Furthermore, we have demonstrated the 
effectiveness of this approach on a client-server example system and with a real-world 
military intelligence system, GeoWorlds.  

Much of the foundational work for the science behind this approach, in addition to 
tool support to implement this science, has been conducted as part of the DASADA 
program. However, this research points the way to additional future work that could be 
carried out, for example: 

• Develop methodologies and tool support for dynamically determining the 
architecture of a running system. The implementation of our approach has so 
far assumed that the architecture of the system is known. We detail the 
beginnings of research to dynamically detect architectures in [24]. 

• Provide tool support for specifying architectural repairs. Currently, we have a 
design for a repair language that can be used to specify strategies for repairing 
a system. In our implementations so far, we have hand-translated these into an 
associated implementation. We are investigating tool support, integrated with 
our architecture tools, to allow a designer to specify repair strategies in our 
repair language.  

• Investigate smarter repair engines. Our implementation of Tailor provides 
simple support for executing repairs. In combination with the future work 
mentioned above, in addition to further research in planning and learning, it 
will be feasible to modify Tailor so that it has a more flexible means for 
determining which repair tactic to execute, it is able to detect whether a repair 
strategy is effected in the running system, and to provide some history and 
analyses of which repairs have been most effective in past repairs of the 
system. 
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